An Adaptive Self-powered Piezoelectric Energy Harvesting Circuit and Its Application on Bridge Condition Monitoring

نویسندگان

  • Teng Li
  • Yunxin Zhang
  • Xinlai Geng
چکیده

The abundant mechanical vibration energy in bridge road environment can be converted into electric energy by using the piezoelectric energy harvest technology, which could be an efficient way to provide energy required by the wireless sensor network in the bridge condition monitoring system. An autonomous energy harvesting system has been designed based on cantilever beams for sensing and acquiring the bridge vibration energy. After the analysis of the dynamic properties of the piezoelectric cantilever beam in the energy conversion, three kinds of interface circuits were compared through simulation and experimental results. It was shown that the VD interface circuit has less power loss. Furthermore, the proposed closed loop control method based on the VD circuit was simple, adaptive, and self-powered, which is suitable for the road energy harvesting application. Finally, the energy harvesting system based on VD circuit was realized with harvested power of around 0.8mW.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Omni-directional Piezoelectric Energy Harvesting System for Wireless Monitoring on Electrical Traction Shearer

For communication and energy supply problems caused by sensors wiring in condition monitoring, a novel wireless monitoring system based on Piezoelectric Energy Harvesting (PEH) and Wireless Sensor Network (WSN) were proposed to realize self-powered and intelligent detection of electrical traction shearer. With the maximum power accumulated from kinetic energy, the working condition monitoring s...

متن کامل

Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester

The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...

متن کامل

An Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester

Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...

متن کامل

A Self-powered Piezoelectric Energy Harvesting Circuit with Frequency Conversion for Wireless Sensor Network

This paper presents a self-powered piezoelectric energy harvesting circuit using frequency conversion. A vibration energy harvesting principle is introduced. Due to a capacitive characteristic of the piezoelectric vibration transducer, an energy harvesting circuit is proposed for matching the capacitive impedance. The energy harvesting circuit consists of a matching circuit with up-conversion, ...

متن کامل

A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor.

Harvesting unexploited energy in the living environment to power small electronic devices and systems is attracting increasing massive attention. [ 1–7 ] As the size of the devices has shrunk to the nanoor microscale, the power consumption also decreased to a modest level, i.e., the microwatts to milliwatts range. It is entirely possible to drive such a device by directly scavenging energy from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017